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Abstract-In this paper we give the generalized Boussinesq--Galerkin general solution of trans­
versely isotropic elasticity, as well as its simplified forms in two special cases. And we prove the
completeness ofthe Lekhnitskii-Hu-Nowacki solution and the Elliott-Lodge solution in such cases
that s~, sf and s~ are possibly equal to each other. ,:jJ 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

Due to the anisotropy ofcomposite materials, the study of anisotropic elasticity is becoming
gradually important along with the wide use of composite materials. Transversely isotropic
material is a noticeable kind ofanisotropic material. Several studies on transversely isotropic
elasticity have appeared so far, such as Lekhnitskii (1940, 1981), Hu (1953), Nowacki
(1954), Lodge (1955), Elliott (1948), Alexsandrov and Soloviev (1978), Ding and Xu
(1988), Horgan and Simmonds (1991) and Fabrikant (1996).

It is the purpose of this paper to continue our previous work Wang and Wang (1995).
In Section 2, for transversely isotropic elasticity we will give a new kind of general solution,
which is similar in form to the Boussinesq--Galerkin general solution of isotropic elasticity
and which will be called generalized B-G solution. In Section 3, we will derive the simplified
forms of generalized B-G solutions in two special cases, in which the first one corresponds
to the condition () = 0 in Wang et al. (1994), and the solution in the second case can
degenerate into the B-G solution of isotropic elasticity, In Sections 4 and 5, we will extend
the theorems 5-7 in Wang and Wang (1995) to the cases that 56, si and s~ are possibly
equal to each other and give the proofof the completeness of the corresponding Lekhnitskii­
Hu-Nowacki solution (LHN) and Elliott-Lodge solution (E-L).

2. GENERALIZED B-G GENERAL SOLUTION

In a rectangular coordinate system (x,y,z) the generalized Hooke's law of a trans­
versely isotropic body is

OU ov ow
ax = A 1 I -;- + A 12 -;- + A I 3 -~- ,

uX uy oz

ou ov ow
ay = A I2 ox +A 11 oy +A 13 oz'

ou ov ow
az = A I3 ox +A 13 oy +A 33 oz'

(I)

where ax, aY" .. ,!xy are stress components, u, v, w the components of displacement, All'

A l2, • •• , A66 elastic constants and

t Project 1772004 is supported by the National Natural Science Foundation of China.
* Author to whom correspondence should be addressed.

3283



3284 W. Wang and M. X. Shi

2A 66 = All -A 12 · (2)

The substitution of eqn (1) into equilibrium equations without body force yields the
operator equation in terms of the displacements.

Pu = 0, (3)

where u = (u, V, W)T (the superscript T denotes the transpose) and P is a 3 x 3 differential
operator matrix

in which

_ [A+c(l 0; +C(2 0;

P - C(1 Ox Oy

C(3 0xOz

C(j Ox Oy

A+C(1 0; +C(2 0;

C(3 Oy Oz

C(3 Ox Oz ]
C(3 Oy Oz ,

C(2A + C(4 0;

(4)

(5)

A l2 +A 66 A44
C(1 = A ,C(2 = -A '

66 66
(6)

Assume that Q = [Qu] is the "adjoint matrix" of P and its components are

Qll = (A+C(1 O;+C(20;)(iX2A+C(40;)-c(~o;o;,

Q22 = (A + C(l 0; + C(2 O;)(C(2A + C(4 0;) - C(~ a~ 0;,

Q12 = Q21 = -C(1C(2V;Ox Oy,

Ql3 = Q31 = -C(3V~OxOz,

Q23 = Q32 = - C(3 V~ Oy On

(7a-f)

(8)

V; = A+ao;, (9)

Consider the second-degree equation of l/s2

(10)

whose two roots l/si and l/s~ are not negative reals, which has been proved by Lekhnitskii
(1981).

In Wang and Wang (1995) it is proved that for eqn (3), there is the following complete
solution
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u = Ql1>,

in which l1> = (qJ], qJ2, qJ3? and satisfies the equation

V6ViVil1>=O, Vf=A+~o;, i=0,I,2.
sf

Now we will rewrite the form of solution (11). Set

Inserting (7a,b) into (13) and using eqns (10) and (12b), we can get

From (13) and (14) the first two expressions of solution (11) are changed into

while the third one of solution (11) is

where
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(11)

(I2a,b)

(13)

(14)

(15)

(16)

V~ = A+bo;, (17)

Let

Solutions (15) and (16) become

in which G = (G], G2, G3)T and satisfies the equation

(18)

(19)



3286 W. Wang and M. X. Shi

(20)

Thus, for transversely isotropic elasticity, there are the complete solutions (19) and (20),
which are called generalized B-G solutions and very similar to the B-G solution of isotropic
elasticity [see formula (45) of this paper].

If setting

(21)

eqn (19) may be rewritten as

(22)

where

(23)

3. TWO SPECIAL FORMS OF GENERALIZED B-G GENERAL SOLUTION

Next we will deduce the simplified forms of generalized B-G general solution, respec­
tively, when s6 = sT and S6 = sT = s~.

Case 1: s6 = ST

Now (ljs6) = IX2 is one root of eqn (10). Inserting IX2 into the above-mentioned equa­
tion, we derive an expression of the relation among IXi (i = 1,2,3,4)

(24)

Using the condition (24) in eqn (9), we can get

(25a,b)

Moreover, considering the relation between roots and coefficients of eqn (10) together with
eqns (9) and (17), we find

From (25a), it turns out that

1 1
a+b=-+-.

sT s~
(26)



On the general solutions of transversely isotropic elasticity 3287

(27)

In eqns (19) and (20), setting B = V6(iG l + jG2+ kG3 ) and inserting (25) and (27) into
them, we can obtain the following B-G type solution

(28)

where

(29)

When S6 = s~, solutions (28) and (29) are also tenable.
If (6) is substituted into the condition (24), then it is observed that

(30)

The condition (30) and the solution (28) are exactly the condition (2.19) and the solution
(3.1) in Wang et al. (1994), respectively.

As a result, if the condition (24) is satisfied, eqn (3) can be changed into

(31)

Using the same method as in Wang et al. (1994), from eqn (31) we can also get the B-G
type solutions (28) and (29), as well as the following Papkovich-Neuber type solution

0(1

(32)

Case 2 : S6 = sr = s~

In this case both a and b are equal to 0(2' Thus, from (9) and (17) it follows that

(33a,b)

And then from (33b) we have

(34)

Since 0(2 is one root of eqn (10), the roots of which are not negative reals, the negative
symbol in (34) should be omitted. Considering 1+0(1 = (A 11/A66) > 0, we get
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In addition (33a) can be rewritten as

(35)

(36)

The insertion of (35) into (36) yields

Again substituting (6) into (37), we get

(37)

(38a,b)

Due to the positive definite of strain energy, A l ,A 33 -AT3 > O. Therefore (38b) is incorrect,
i.e., the negative root in (33a) should be omitted, which implies

Thus, the general solutions (28) and (29) are changed into

(Xl

U = V~B--1-V(Vp'B),
+IX,

V~V~B = 0,

in which

v = i8x +jl7y+k8"

V p = i8x+j8y+kcx2 8z.

Let

u= iu+jv+k~w,

B = iB l +jB2+k~B3'

Vo = i8x+j8y+k~ 8z.

Then (40) becomes

When the material is isotropic,

(39)

(40)

(41)

(42)

(43)

IXI 1
1+IX\ = 2(l-v)·

(44)

Hence, eqn (43) changes into
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2 1
u = V B- 2(1-v) V(VoB),

V2 V2B = O.

This is the B-G solution of isotropic elasticity.
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(45)

4. COMPLETENESS OF THE LHN SOLUTION

First, it is easy to verify that G], G2 and G] in the generalized B-G solutions (19) and
(20) can be substituted by the following G], G2 and G], respectively

(46a,b,c)

where

(47)

Using the above-mentioned nonuniqueness of G], G2 and G], Wang and Wang (1995)
has proved that if the elastic region is z-convex and s~, sf and s~ are not equal to each
other, the LHN solution

ifF o<Po
u------ oxoz oy'

o2F o<po
v---+-- oyoz ox'

w = -cx.(A+{3o;)F,

(48)

is complete. In this section we will further prove that if s~, sf and s~, or two of which, are
equal, the LHN solution is also complete. For this purpose we begin with proof of the
following lemmas.

Lemma 1.
Assume the elastic region n is z-convex and s~ = sf = s~. Then there exists h] such

that

(49)

in which
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V~GFl=o, i=I,2; j=0,1,2.

Proof According to Lemma 4 of the Appendix, Gi (i = 1,2) can be expressed as

(50)

(51)

Gi = GiOl+zGjl) +z2Gi2), i = 1,2,

V~GF) =0, i= 1,2; j=0,1,2.

Similarly, we can suppose

h
3

= h(O)+zh(l)+z2 h(2 l ,

V~h(j) = 0, j = 0, 1,2.

The insertion of (52a) and (53a) into (46a,b) yields

where

G(l) = G(ll + (;(3~ (2h(2 l + Oh('») i = 1,2,
I 'ox,. oz '

(52a,b)

(53a,b)

(54)

o oh(2)
G(2) = G(2)+(;( --- (55)

I I 3 OX; oz '

in which (O/OXl) = (a/ax), (O/OX2) = (%y).
From eqns (55), (52b) and (53b) it follows that

V~GF) = 0, i = 1,2; j = 0, 1,2.

Again inserting (55) into (50), we obtain

oG\I) oGil ) oG\l) oGil ) ( Oh(l»)-- +-- = -- +-- +(;(3/\ 2h(2) + -- = 0,
ax oy ax oy oz

From Lemma 2 in the Appendix, there

exists h(2l, which makes (57) reached and V~h(2) = 0,

exists h(ll, which makes (58) reached and V~h(ll = 0,

(56)

(57)

(58)

(59)
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exists h(O), which makes (59) reached and V6h(O) = 0.
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(60)

So the lemma is proved.

Lemma 2.
If the elastic region n is z-convex, and two of S6 si and s~ are equal, we might as well

assume S6 = si t= s~, then there exists h3 such that

where

oGF) oGY)
~+ay=o, j=0,1,2,

V6GF) =0, j=O,l; i= 1,2,

V~G~2) = 0, i = 1,2.

From Lemma 5 of the Appendix we can set

h 3 = h(O) +Zh(l) +h(2),

V6h(j) = 0, j = 0, 1; V~h(2) = 0.

(61)

(62)

(63)

In the similar way of the proof of Lemma 1, there exist h(°l, h(l) and h(2) such that (61) and
(62) are reached. The proof is omitted here.

Next, we come to prove the completeness of the LHN solution.

Theorem 1.
Assume the elastic region n is z-convex. Then the LHN solution (48) is complete.
Proof It is shown previously that in eqns (19) and (20), Gb G2, G3 can be replaced by

G[, G2, G3 in eqn (46), respectively, i.e.

(64)

in which G, (i = 1,2) are given by (49) or (61), G3 by (46c).
Let

A(j) = rx

GY) dx-G\j) dy+B(J) dz,
Jxo

Ix "'G~(J) oG(J) (OG(J) OG(J))
( ") U 2 dId 2 2 I dBJ = -- x--- y+s ---+-- z,

x oz OZ J OX oy
o

(65)

where xo is some point of the region n and x is any point of the region n. Because of
conditions (50) and (51) or (62), the linear integral of eqn (65) is independent of routes. In
view of (65), we have
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'" ()A(.) vA J
GJ - --

I - - oy ,
A. oAU)

GU) = -- }. = °1 2
2 ax' , , , (66)

Set

VJAU) =0, j=0,1,2.

A = A(O) +ZA(I) +A(2), when s5 = sf -# s~.

(67)

(68)

Equations (67) and (68) lead to

While from eqns (49) or (61), (66) and (68) we get

(69)

(70)

Applying (70) and writing - [0:3/(1 +o:dlV5G3 as Fin eqn (64), and then letting
tPo = VfV~A, we arrive at the LHN solution (48).

Moreover, it can be verified that solution (48) satisfies eqn (3). Therefore, the LHN
solution is complete. Theorem 1 is proved.

When the material is isotropic, the introduction of (39) and (44) into (48) yields

02F otPo
u = oxoz - oy ,

02F otPo
v = oyoz + ox '

02F
w = - -2(1-v)V2F

OZ2 '

V4 F = 0, V2tPo = 0. (71)

5. COMPLETENESS OF THE E-L SOLUTION

When sf and s~ are not equal to each other, Wang and Wang (1995) has proved the
completeness of the following E-L solution with the aid of the LHN solution (48)

where

o otPo
u = O)tPl +tP2)- oy ,

8 8tPo
v = O/tPl +tP2)+ ox '

o
w = 0/k1tPl +k2tP2), (72)
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and

V;4>i = 0, i = 0, 1,2, (73)

(74)

Next we will take the case of sf = s~ into account.

Theorem 2.
Assume the elastic region n is z-convex and sf = s~. Then the following solution is

complete

Vf4>i = 0, i = 1,2; V~4>o = 0. (75)

Proof It is not difficult to verify that (75) satisfies eqn (3). So it is omitted. Now we
prove that any solution of eqn (3) can be expressed as (75).

First, when sf = s~, the solution of eqn (3) can be rewritten as (48). And from Lemma
3 of the Appendix, we can resolve Fin (48) in the form

F=11 +Z12' Vi!; = 0, i = 1,2.

Set

Then from (77) and (76b), there is

Vf4>i=O, i=I,2.

(76a,b)

(77)

(78)

After inserting (76a) into (48) and then using (77), we obtain the solution (75). So Theorem
2 is proved.

When the material is isotropic, (75) changes into

o 04>0
U= 0)4>I+ Z4>2)- oy'

o 04>0
v = 0/4>1 +Z4>2)+ OX '

o
w = OZ(4)1 +z4>2)-4(l-v)4>2'

V24>i=0, i=0,1,2.
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APPENDIX

If every line segment parallel to the z-axis lies entirely in n whenever its end points belong to n, we call such
a region n z-convex. In this Appendix we always assume that n is z-convex.

First we take the Lemma 2 in the Appendix of Wang and Wang (1995) as Lemma I herein

Lemma I.
If the region n is z-convex and f satisfies.

V;f= 0, in n,

where s is not pure imaginary and

2 I 2
V, = A+ -a"

S2

there exists A such that

I
V;A = 0,

akA in n,
-=f,
az<

where k are positive integers.
Applying Lemma I, we can prove the following several lemmas :

Lemma 2.
In the same conditions as in Lemma I, there exists B such that

1

V;B = 0,

aB inn.
A az = -f,

The proof is omitted.

Lemma 3.
If A satisfies

(AI)

(A2)

(A3)

(A4)

there exist A(O) and A(I) such that

V;V;A = 0, inn, (AS)
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{

A = A. IO)+zAIlJ,
inn.

v~A (j) = 0, j = 0, I,

Proof Let

B = V~A.

Then

According to Lemma I, there exists A(I) which satisfies
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(A6)

(A7)

(A8)

1

V2A(I) = 0, ,

oAl l ) S2

----a;- = 2 B,

From (A7) and (A9) we have

inn. (A9a,b)

2oAI I )
V2 A = = ..,2 (zA(l»)

s S2 oZ v s .

Therefore,

Setting

then (All) becomes

V~A(O) = O.

Equations (AI2), (AB) and (A9a) together are the same as (A6).
The lemma is proved.

Lemma 4.
Assume

V~V~V~A = 0, in n.

Then there exist AlO), All) and A(2) such that

{

A = A.lO
) +ZAl l

) +z2 A(2),
inn.

V~A(j) = 0, j = 0, 1,2,

Proof Letting

then

V~V~B = o.

According to Lemma 3, there exist B(O) and Ifl) which satisfy

From Lemma I there exist A(2), All), respectively, such that

(AW)

(All)

(AI2)

(AB)

(AI4)

(AI5)

(AI6)

(AI7)

(AI8a,b)
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Based on (AI9) and (A20), we get

W. Wang and M. X. Shi

(AI9a,b)

(A20a,b)

By adding the two expressions of (A21) and using (AI6) and (AI8a)

Setting

and considering (A22) and (A23), we have

Equations (A23), (A24), (A20b) and (AI9b) together are exactly (AI5).
Thus, the lemma is proved.
Similarly, we have:

Lemma 5.
If

V'6V'6V'~A = 0, in n,

then there exist A(o>, All), A(2) such that

Proof Let

B = V'~A.

Then

V'6V'6B = O.

According to Lemma 3, there exist 1J<0) and Bl l
) which satisfy

B = BlO)+ZBl l ), V'6B(J) = 0, j = 0, I.

From Lemma I there exist All) and AlO), respectively, such that

81 I )iPAlO
) 2 BA(I)

--- __ =B(O) , V'~A(O)=O.

~ S6 Bz2 s~ Bz

Thus, we have

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29a,b)

(A30a,b)

(A3Ia,b)
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Adding the two expressions of (A32) and using (A29a) and (A27), one yields

Thus,

Setting

From (A34) and (A35), we get

Equations (A35), (A31b), (A30b) and (A36) together are exactly (A26). The lemma is proved.
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(A32)

(A33)

(A34)

(A35)

(A36)


